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Intermediate Diagonal Tension Field Shear Beam
Development for the Boeing SST
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This paper describes the comprehensive test and analysis program initiated for the development of titanium
intermediate diagonal tension-field shear beam analysis and design methods necessary to support the Boeing
SST. Existing semiempirical design and analysis procedures for aluminum beams have been extended for
use with titanium beams. Detailed studies of the test results and current design methods show that major
improvements of intermediate shear beam structural efficiency can be obtained through improved analytical
procedures. A general theoretical analysis of post buckled stiffened plates, adaptable to the analysis of inter-
mediate diagonal tension-field shear beams, was developed and is presented here. The theoretical formulation
of this nonlinear problem was solved by the Raleigh-Ritz method. Improvements available after the theoretical
program becomes fully operational should constitute a second generation of shear beam designs that will provide
improved and more efficient structure for the SST and other new vehicles. Areas for improvements to shear
beams that have evolved during the program are indicated.
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Nomenclature

cross-sectional area of chord
cross-sectional area of stiffener(s)
elastic properties of isotropic web

distance locating the stiffeners
stiffener spacing
web bending rigidity
Young's modulus of the web or chord
Young's modulus of stiffener
displacement constant, effect of uniform bending

moment on axial strain of beam
displacement constant, effect of moment due to end

shear load on axial strain of beam
displacement constant, effect of moment on axial

centerline deflection of beam
displacement constant, effect of end shear load on

centerline deflection of beam
stiffener forced crippling strength
stiffener compression yield strength
applied shear stress in web
allowable web strength
web ultimate shear strength
web tension ultimate strength
web tension yield strength
total height of beam
distance between the upper and lower chord centroids
moment of inertia of chord about z axis
moment of inertia of stiffener about x axis
product of inertia of stiffener in xz plane
moment of inertia of stiffener about z axis
diagonal tension factor
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Ks = plate buckling coefficient in shear
Ksc = stiffener stress correction factor
€ = length of the beam
mi = row indice on w-displacemerit coefficient
HI = column indice on ^-displacement coefficient
P = shear load on the beam
Pcr = shear load on beam producing initial buckling
Pi = row indice on ^-displacement coefficient
#1 = column indice on ^-displacement coefficient
?! = row indice on w-displacement coefficient
si = column indice on w-displacement coefficient
t = thickness of web
ts = thickness of stiffener flange attached to web
u = displacement in x direction
um mi — ̂ -displacement coefficient
U = total potential energy
v = displacement in y direction
Vb = bending strain energy of web
Vc — strain energy of chords
Vm = inplane strain energy of web
V5 = strain energy of stiffeners
VPIQI = u-displacement coefficient
v0qi = ^-displacement coefficient, p± = 0
w = displacement in z direction
Wmax = maximum out-of-plane deflection of web
W = work of external shear force
Wrisi = ^-displacement coefficient
x,y,z = coordinate axes
y = displacement constant, shearing stress at root of

beam (x = 0)
S = variational operator
,̂ = Poisson's ratio

Introduction

THE general problem of intermediate tension field beams
has been treated analytically by Wagner1 (1929) and

Wagner2 (1935), Koiter3 (1944), Denke4 (1944), Levy5 (1945)
and Djubek6 (1966) and empirically by Lipp7 (1939), Kuhn8

(1952) and Rockey9 (1957). The analytical theory for incom-
plete diagonal tension or intermediate shear beams is very
complex. Prior investigators have introduced various simplify-
ing assumptions in order to make the problem mathematically
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tractable. In doing so, they have limited the range and type of
beams that can be analyzed, thereby reducing the usefulness of
their analysis procedures. The procedures resulting from theo-
retical approaches also have not lent themselves to simple design
methods easily used by the design engineer. As a result, the
material dependent empirical procedures developed by Lipp,7
and Kuhn8 are the most widely used in the aircraft industry.
These two methods were developed for 2024-T3 and 7075-T6
aluminum.

It was recognized early in the Boeing Supersonic Transport
program that the present empirical design procedures for
intermediate shear beams could not be readily extended to
other materials such as titanium.10 After a thorough litera-
ture search, it became apparent that considerable scatter exists
between predictions and tests. The existing theoretical
analysis methods, for the most part carried out before the age
of the computer, were not sufficiently accurate. The SST
requires development of structure with higher efficiencies due
to performance requirements and associated economic impli-
cations. 1 1 A comprehensive program involving both test and
mathematical analysis was necessary to develop new stress and
strength analysis methods for titanium intermediate shear
beams. The tests have been accomplished.12 Development
of a computer program providing a nonlinear post buckled
analysis of a shear beam has been completed and docu-
mented.13 However, reduced SST funding has dictated the
termination of the shear beam development program without
combining the results of those two phases of the effort.
Those results need to be combined in order to develop the
improved strength prediction method and the new generation
of shear beam designs as anticipated when the program
was initiated.

The purpose of this paper is to show that major improve-
ments can be made in the predictions of strength of inter-
mediate shear beams designed by existing methods, that the
development of a more general theoretical analytical proce-
dure for analysis of stiffened plates may be applied to the
intermediate shear beams, and that improved families of beam
designs with increased efficiency will become available when
the analytical tools are adequately developed and employed.

Study of the Kuhn Method

An examination of the Kuhn method presented in NACA
TN 2661 and 26628 revealed large discrepancies exist between
some of the tests and the strengths predicted by the method.
This fact is understandable since the treatment in NACA
TN 2661 is empirical. The various correction coefficients
used are taken from the lower boundary of the scatter band
of approximately two hundred beam tests. An example of
this conservatism in the method is shown in Fig. 1. This
figure provides a plot of a nondimensional web tear strength
(fslFtu) versus a nondimensionalized web buckling coefficient.
The indicated test points include 2024-T3 and 7075-T6 data
from NACA TN 2662. The plotted data was analyzed as in
NACA TN 2661 without regard to percent stiffening and
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other parameters. The figure shows a broad scatter band in
the test data with the allowable strength curve established at
the bottom of the scatter band of that data.

This conservative approach is necessarily followed through-
out in the development of the Kuhn analysis method for inter-
mediate shear beams. As a result, beams designed per NACA
TN 2661 have proved to be reliable. Thus, the method has
been used extensively in the design of most present-day air-
craft. The fact that the tools that were presented in NACA
TN 2661 were developed before the general use of major
computer programs and have served so well for so many
years must be considered as remarkable.

SST Shear Beam Developmental Program Requirements

In order to satisfy the SST requirement for higher struc-
tural efficiencies, efforts were made to obtain consistent,
smaller margins between tests and predictions for inter-
mediate shear beams. This necessitated considering various
geometric parameters not used previously, classifying types
of loading and stiffeners, and improving representation of
material properties. Since the SST primary structural
material is titanium, another major task was extending the
analysis method to cover this material. Careful control of
specimen geometric parameters, material properties^ and
testing procedures were exercised in order that test data
scatter could be reduced. The test program was set up to
determine the effects on ultimate strength and other charac-
teristics of a titanium beam due to variations of web thickness,
stiffener spacing, panel depth, stiffener type and size, chord
stiffness, and loading (combined shear and moment, com-
bined sheaf and axial load).

Testing

After reviewing prior shear panel test systems, it was
decided to use a system that permitted testing of fully canti-
levered beams while controlling both axial load and bending
moment.12 A typical shear beam test setup is shown in Fig. 2.
Ratay14 independently selected a similar test system,

A grid-shadow Moire technique was developed and used
to observe the growth of buckle patterns in the web.15

Extensive use was also made of strain gages (Figs. 3 and 4).
The initial test series of six aluminum and four titanium

cantilevered beams were loaded in shear, in shear plus axial
tension, and in shear plus axial compression. These initial
tests have provided orderly trends with failures initiating in
the stiffehers and webs. Beam strengths were decreased from
4% to 12% by adding axial compression load approximately
equal to the shear load on the beam, or increased by approxi-
mately 7% by adding axial tension load in the range tested.
Table 1 shows the various geometric properties and the test
results for each beam.

SHEAR DIAGRAM
L
MOMENT DIAGRAM

REINFORCED .REINFORCED
SECTION|UN|FORM JEST SECTION |SECTIO(V ~1

.06 ~1 ^ £~~" 77 1.0
NONDIMENSIONALIZED WEB BUCKLING PARAMETER I VLOADING TRUSS

Fig. I Intermediate shear beam test results. Fig. 2 Typical shear beam test.
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Fig. 3 Shear web viewed with Moire grid at low load.

Fig. 4 Shear web viewed with Moire grid at high load.

Using the methods indicated in NACA TN 2661, without
any attempts to account for combined loading, the test results
ranged from 22% to 88% above the predicted strengths. For
the titanium beams, linear extrapolations of the aluminum
web and stifTener strength prediction methods were used. The
results for the second test series are shown in Table 2. The
first two tests (#12, 13) are duplicates of specimens in the
first series (#9, 7) except they are 5 instead of 3 bay beams,
(Figs. 5 and 6).

TABLE 1 INTERMEDIATE SHEAR BEAMS-TEST SERIES I *

SPEC.
NO. MAT'L
2
3
4

5

6
7
8

9

10

11

ALUM.
TITAN.
ALUM.

TITAN.

ALUM.
TITAN.
ALUM.

ALUM.

ALUM.

TITAN.

STIFFENER .. ————— rt*-
AREA FAILURE TEST END 1

WEB RATIO LQAD PREDICT. LOAD * —— — -|k-
(t) A§/dt (kips) b (kips) 1

.071

.050

.071

.050

.071

.043

.071

.071

.071

.045

.450

.360

.450

.370

.235

.270

.235

.235

.235

.260

57.7
60.0
55.3

56.5

49.7
54.0
43.7

46.0

53.2

51.0———
AVE.

1.27
1.52
1.22

1.33

1.43
, 1.88

1.26

1.33

1.54

1.72
• ———
1.45

50COMP. (4% STRENGTH DECREASE
DUE TO COMPRESSION)

50COMP, (6% STRENGTH DECREASE
DUE TO COMPRESSION)

50COMP. (12% STRENGTH DECREASE

c

50 Tl

DUE TO COMPRESSION)
(7% STRENGTH DECREASE

DUE TO COMBINED
MOMENT AND SHEAR)

ENS. (7% STRENGTH INCREASE
DUE TO TENSION)

50 COMP. (6% STRENGTH DECREASE
DUE TO COMPRESSION)

TABLE 2 INTERMEDIATE SHEAR BEAMS-TEST SERIES II

STIFFENER

SPEC.
NO. MAT'L
12 ALUM.
13 TITAN.
14
15

16A
163

17
18 TITAN.

WEB
(t)

.071

.042
.036
.049

.041

.041

.032

.053

MttCH.

RATIO
As/dt

.235

.290

.885
1.02

.560

.570

.600

.885

FAILURE IC01

LOAD PREDICT,
(kips) b

38.0
41.3
37.2
53.8

37.2
39.7

37.0
53.0

AVE.

DESCRIPTION! ___ |L

1.10
1.36
1.67 >
1.44

&
1.29 -J
1.35 o

^

193^i.yj
1.40 j

j
£ SIMILAR TO 18 EXCEPT FOR
<^ .013" PAD ON WEB AT WEB-
fjtz TO-STIFFENER RIVET LINES.
o2
<«> SAME AS 16A EXCEPT FOR
ZuQ .010" PAD ON WEB AT WEB-
g TO-STIFFENER RIVET LINES.
u.

1.44

. . (1) SPECIMENS 12 & 13: 5 BAYS, d = 9", DEPTH = 24"
(2) ALL OTHER BEAMS:_7 BAYS, d = 4.5", DEPTH = 18". EXCEPT NO. 17 WHICH

b BASED ON EXTRAPOLATION' OF NACA TN 2esi

Comparison of the results of like tests led to the conclusion
that beam length effect must be taken into account in pre-
dicting strengths. The remaining six tests represent typical
SST fuselage shear panel designs. Reduced shear head
countersunk titanium rivets were used to attach the stiffeners
to the webs, and premature failure of some of the panels
occurred due to rivet tension pull-out. From analysis of
stiffener and web strain gage data, it appears that the ulti-
mate strengths of the beams in these cases were nearly reached
and failure would have occurred at loads close to the ob-
served loads had the rivets not failed. The test results range
from 10% to 93% above the strength predicted by the
methods indicated by Kuhn extrapolated to account for the
properties of titanium.

Fig. 5 Failed 3-bay diagonal tension shear beam.

ALL TEST SPECIMENS: 3 BAYS, d = 9", DEPTH = 24"
b BASED ON EXTRAPOLATION OF NACA TN 2661
c LOADED IN SHEAR AT END OF BEAM (COMBINED SHEAR PLUS MOMENT) Fig. 6 Failed 5-bay diagonal tension shear beam.
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Discussion of Test and Analytical Correlations

Modifications to the analysis method were made to reduce
the large discrepancies that existed between predicted strengths
and the strengths obtained from the tests. Linear extra-
polations of web and stiffener strengths were replaced by
empirical equations derived from the test data. The following
equation developed by Tsongas and Ratay16 was used for
web strengths :

Table 3 Comparison of prediction methods

0)

The following material dependent equation was used for
the stiffener forced crippling strengths

= 0-00058* (2)

The strength predictions resulting from these two equations
have proven to be consistently conservative and have helped
to reduce the scatter between tested and predicted strengths.
Another improvement to the Kuhn method was the addition
of a beam length effect reduction coefficient which reduced
the calculated applied stiffener stress.

In the present Kuhn method, the applied stiffener stress is
calculated based on the assumption that the stiffener supports
one panel length of diagonal tension. In actuality, the chord
acts as a continuous beam over several supports thereby
reducing axial stresses in the stiffeners between the stiff end
bay members. The Kuhn method recognizes the effect of
beam length on beam strength indirectly through the "portal
frame" correction to web stresses, but it does not treat the
direct effect upon the stiffener stresses. Figure 7 gives the
stiffener stress correction factor as a function of number of
bays in the beam and chord beaming rigidity which can be
applied to correct for applied stiffener stresses. These curves
are based on continuous beam theory.

Using the preceding modification to the Kuhn method, the
differences between test and predicted strengths have been
reduced considerably. Table 3 gives the ratios of test over
prediction for both the extrapolated Kuhn and the modified
Kuhn methods for all the tests. Using the modified Kuhn
method reduces the average over-strength ratio from 1.45 to
1.18. This is a significant improvement. Note that no effort
was made to sort out the effects of combined loading in the
modified analysis method. Those effects are small compared
to the data scatter.

Although comparisons in Table 3 show considerable im-
provements, the (remaining scatter) results show that there
are major improvements yet to be made. Those improve-
ments must be made in order to fully satisfy the requirements
for efficient structure. Requirements for optimizing shear

Test Test

Test No.

Pred.
NACA TN 2661

Extrap.

Pred.
NACA TN 2661

Modified

2 1.27
3 1.52
4 1.22
5 1.33
6 1.43
7 1.88
8 1.26
9 1.33
10 1.54
11 1.72
12 1.10
13 1.36
14 .67
15 .29
16a .29
16b .35
17 .93
18 .40

.18

.10

.13

.03

.24

.40

.09

.15

.33

.31

.09

.09
1.29
1.04
L.04
1.06
1.47
1.10

Average 1.45 1.18

beam designs and for the handling of combined loads further
necessitate improvement in analysis methods. Since the
number of parameters affecting the strength of shear beams
are so numerous, it is an economic impossibility to conduct
the amount of testing that would be required to develop a
strictly empirical efficient, multipurpose, general analysis
method. For this reason, a theoretical approach to the non-
linear analysis of stiffened plates applicable to the analysis of
intermediate shear beams was initiated along with the above
analysis and test work. It is hoped that the general theoretical
approach to the problem, along with test data, can be used
to develop general analysis procedures adaptable to inter-
mediate shear beams of any material with combined loading
and with various geometric properties.

Theoretical Development (Sherrer Option Program)

A solution is presented to the nonlinear problem of the
deformation of thin rectangular plates which are stiffened as
follows: by elastically compressible stiffeners along the vertical
edges, by elastically compressible chords flexible in the plane
of the plate along the horizontal edges, and by intermediate
equally spaced vertical stiffeners that are elastically com-
pressible with in-plane, out-df-plane and nonsymmetric
bending flexibilities. The web-plate is assumed to be simply-
supported along its boundary and "in-plane" cantilever beam
type shear and bending deformation is allowed.

oo

F= -2

J
o

\
\

V

L3AYS

4 BAYS-

.3 BAYS;

BEAM WITH 2 BAYS=

.4 .6 .8 1.0 12
^ CHORD BEAMING FLEXIBILITY

Formulation of the Problem
Consider a rectangular webplate of dimensions / and h

acting as a cantilever beam, supported at the left, stiffened
along its edges and by intermediate vertical stiffeners, and
subject to a shear load as indicated in Fig. 8.

,

UHC- x,u

Fig. 7 Stiffener stress correction factor due to chord beaming. Fig. 8 Reinforced rectangular web.
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Under loading, the beam will show both shear and bending
distortions. The horizontal chords will shorten or lengthen
axially due to bending loads and will deflect under the action
of the post buckling membrane forces in the xy plane. The
internal stiffeners will shorten axially and deflect inplane and
out-of-plane under the action of the postbuckling membrane
forces. The edge vertical stiffeners are allowed to shorten
axially under the action of the membrane forces.

In the direction perpendicular to the plane of the webplate,
tjie edge stiffeners are considered to have sufficient flexural
rigidity so that the condition of zero deflection of the webplate
along its boundary is satisfied. The solution is restricted to
consideration of the case of a plate simple-supported along its
boundary, i.e., assuming that the edge stiffeners do not
prevent the webplate from rotating along the edges. It is
further assumed that the webplate has no initial curvature.

The theoretical formulation of the nonlinear problem is
carried out using a potential energy formulation. In order to
get coupling of the inplane and out-of-plane deformations (and
hence the "post buckling" effect of the thin web structural
system), the nonlinear strain-displacement equations of
elasticity must be used when the inplane strain energy of the
web is written. The total potential energy expression for the
system is written as follows:

U=V*+ - W (3)

Using the classical strain energy expressions for beams and
plates from the literature,17 the total potential energy expres-
sion for the structural system may be written as follows:

f 3 - f * Y L , (^2 ^ {d2™^i\ Ci1 THT +C22nn24 Jo Jo I (dx2) \dy

2C1:

d2wd2w}~\ J J I f " f'l
TTTTTT <***+?' fCndx2 dy2\\ 2 Jo Jo)

T T- +Caa —— +- —— +

8v„T- + h- +2 — du dw dw
~~~

Ty

1 dv(3w\2 l/M'/M2!! A A ^A/E/ fhldVV j2 Ty fe + 4 fe) teJ ]}** + — Jo feu* H-

E'IZZ' thi&u\2

2 Jo \dy2\x=
E'ixx . / • * fa2w)
T-Jo vU*"

AE

(4)

By including the various energies above in the post buckling
analysis of a stiffened plate, all the effects considered by
previous investigators are taken into account plus several
additional effects such as: 1) combined shear and bending;
2) unsymmetric stiffeners; 3) multibay beams; 4) out-of-plane
deflection of the intermediate vertical stiffeners.

This formulation has been generalized further in Boeing
Document AS 279413 to include the torsional and warping
rigidities of the chords and stiffeners.

Method of Solution

The method of solution used is the Raleigh-Ritz technique
for minimization of the total potential energy with assumed
in-plane and out-of-plane displacement functions that satisfy

the boundary conditions of the stiffened plate. The solution
to the problem is obtained by, taking the first variation of the
total energy, substituting the assumed displacement expres-
sion functions into this variational expression, and then
integrating. This leads to a set of simultaneous nonlinear
equations in terms of the undetermined coefficients of the
assumed displacement functions. By assuming displacement
functions in terms of summation type series, there is flexi-
bility in choosing the appropriate coefficients required to give
an accurate solution to the problem. Since the formulation
is worked out in terms of summations, the computer auto-
matically does the necessary expansions and the number of
terms or coefficients used in the displacement functions can be
any number deemed necessary to get a good solution. Solu-
tion time and storage capacity are the limiting conditions on
the number of parameters.

The displacement functions assumed are taken in the form

_ y —- I -f
t* \ J s* I '

sin

X voql cos —- +
41 AI

• sin

SZ»««cos^7=cos

. ^TT . siiry
w = Z Z w>rm sin —— sin ——

ri si I h

(5)

(6)

(7)

where e±9 e2, e3, e^ y, «mlhl, voqi, vP1Qi and wrlsl are undeter-
mined displacement parameters. In Eqs. (5) and (6), which
give the inplane displacements of the stiffened plate, the poly-
nomial terms are chosen to take care of the elementary beam
deflections due to bending and shear. The Fourier terms
correct the errors introduced by the polynomial assumptions.
Equation (7) for the out-of-plane deflections of the system
satisfies the boundary conditions of the beam web.

These displacement functions satisfy the beam boundary
conditions and allow for the following beam behavior: 1)
shear and bending deformations of the beam, inplane bending,
out-of-plane bending, and axial deformation of the internal
stiffeners; 3) inplane bending and axial deformation of the
chords; 4) axial shortening of the vertical edge stiffeners.

The displacement equations and their variations are then
substituted into the first variation of Eq. (4) and the results
integrated. This leads to an expression for the first variation
of the total potential energy in terms of the deformation
parameters and establishes the equilibrium of the beam system
as follows:

8U(8el9 2, 8e2, . . . , etc., . . .) = 0 (8)

The coefficients for &i, Se2, etc. are collected and each set to
zero, respectively. A set of nonlinear simultaneous equations
in terms of the undetermined deformation parameters and the
load P will result.

The equations are then written with the linear terms on the
left-hand side (LHS) of the equations and with the loading
and nonlinear terms on the right-hand side (RHS). If the
nonlinear terms on the RHS of these equations are set to
zero, the remaining set of linear equations give the solution to
the linear, small deflection beam problem. Also, the buckling
problem of stiffened plates can easily be deduced from the
results.

Numerical Solution

First, the appropriate number of terms for the displacement
functions considered necessary for a good solution are selected.
Then through the summation process, the equations derived
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in the previous section are expanded to give an appropriate
number of equations agreeing with the number of deflection
terms selected. The displacement coefficients (el9 e2, e3, e*,
y, VQI, tin, Wn, ... etc.) are now obtained by the solution of
the set of nonlinear simultaneous equations. These equations
are solved using a Gauss-Siedel iteration procedure. This
procedure for the solution of the system of nonlinear equations
is outlined below.

1) The set of equations are solved for the displacement
parameters. Note that the nonlinear system of equations is
solved in terms of the Wn displacement parameter and not in
terms of the loading as would be done conventionally. This
is done in order to get better convergent solutions to the
problem and is consistent with what was done previously in the
literature (see NACA TN 962).5 Further, it is to be noted
that the problem should be solved in terms of the most
dominant displacement parameter in order to get good
solutions.

2) For the first iteration, values of w22/t, w13/t, w33/t, P and y
are estimated corresponding to a given value of Wu/t. Then,
values of the displacement coefficients and load P are cal-
culated.

3) Improved values of the displacement coefficients and
load P are obtained using the above equations with the values
of the unknown parameters calculated from the first iteration.
It is usually necessary to use under-relaxation procedures to
obtain convergence.

4) This process is repeated until there is convergence for
each displacement coefficient and load P.

Once the system of nonlinear equations converges, the
deflection and stress state of the beam is easily calculated.

Numerical Results

Numerical results are obtained as outlined below:

1. Single bay stiffened plate

The deformations of a single bay stiffened plate (vertical
edge stiffeners that allow only axial shortening and horizontal
edge chords that allow inplane bending) have been computed
choosing the following coefficients of the deflection functions:
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Fig. 10 Effect of chord flexibility single bay beam.

y, #01, #12, #14, #16, #18, Wn, n>22, H>i3, H>33. For a given beam
geometry, the coefficient wn was chosen with values Q.lt, 0.51,
1.Or, etc. Each solution is considered the first iteration of the
next solution. Good convergence of the nonlinear equations
have been obtained in the low post-buckling range

(P < 5pcr and ww/f < 5)
For this single bay beam, the influence of stiffener area and

chord flexibility has been investigated. Figure 9 shows the
effect of stiffener area on the maximum deflection of a square
plate loaded in shear. For each case shown, the chord
geometry is not changed. Figure 10 shows the effect of in-
plane chord flexibility on the maximum deflection of a
rectangular plate loaded in shear. Stiffeners remained
unchanged for each case.

2. Two bay stiffened plate

The deformation of a two bay stiffened plate have been
computed choosing the following coefficients of the deflection
functions; A, t?0i, #12, #14, #ie, #is, wrisl (r± = 1 —, 6; si = 1, --, 4
with fi -f si = even terms only).

Figure 11 shows the influence of the out-of-plane flexibility
of the interior stiffener on the buckling load of the plate and
the maximum deflection of the plate.

2.0

Fig. 9 Effect of stiffener area single bay beam. Fig. 11 Effect of stiffener out-of-plane flexibility—two bay beam.
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Conclusions
Current analysis and tests indicate that major improvements

are available in the structural efficiency of intermediate
tension field shear beams. Detail studies of current analysis
methods for these types of beams show them to be conserva-
tive, limited in application (material dependent for example),
and in need of improvement in providing more efficient,
optimized designs. To extend these present semiempirical
analysis methods to the parameter ranges, loadings and
materials required to provide for optimized designs of shear
beams through additional testing alone is an economic
impossibility. For this reason, a general theoretical approach
to the post buckling analysis of stiffened plates that can be
adapted to the analysis of intermediate diagonal tension field
beams, such as that discussed here, must be used as the
primary tool for further sensitivity investigations and design
improvements.

The improvements available, after the theoretical program
becomes fully operational and is used to handle the most
general cases (only results of limited problems are shown
here), should constitute a second generation of shear beam
designs that will provide improved and more efficient struc-
tures. Some of the areas of interest that have evolved from
the present work are as follows: 1) Alternate light and heavy
stiifeners to take advantage of the length effect; 2) skewed
stiffeners; 3) chem-milled web designs (pads at the web to
chord and stiffener attachments); 4) secondary stiffeners
parallel to the chords to create deep beam chords; 5) integral
web-stiffener and welded designs; 6) orthotropic webs.

The general theoretical program should permit these con-
cepts to be simulated and evaluated, evolving combinations of
these features most advantageous to the design requirements
for a particular aircraft.

Although this treatment deals only with static strength, it is
recognized that the design of shear beams and other structure
is strongly influenced by fatigue considerations. The improve-
ments in design, static strength, stress analysis, and deflection
analysis as discussed above must be accomplished first in order
to permit development of a meaningful fatigue analysis of
intermediate shear beams.

Hopefully these efforts, initiated to support the Boeing SST
design, will be of value in the design of other systems which
also require high structural efficiency.
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